3 1 M ay 2 00 2 Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines
نویسندگان
چکیده
Internal transport barriers (ITB's) observed in tokamaks are described by a purely magnetic approach. Magnetic line motion in toroidal geometry with broken magnetic surfaces is studied from a previously derived Hamiltonian map in situation of incomplete chaos. This appears to reproduce in a realistic way the main features of a tokamak, for a given safety factor profile and in terms of a single parameter L representing the amplitude of the magnetic perturbation. New results are given concerning the Shafranov shift as function of L. The phase space (ψ, θ) of the " tokamap " describes the poloidal section of the line trajectories, where ψ is the toroidal flux labelling the surfaces. For small values of L, closed magnetic surfaces exist (KAM tori) and island chains begin to appear on rational surfaces for higher values of L, with chaotic zones around hyperbolic points, as expected. Island remnants persist in the chaotic domain for all relevant values of L at the main rational q-values. Single trajectories of magnetic line motion indicate the persistence of a central protected plasma core, surrounded by a chaotic shell enclosed in a double-sided transport barrier : the latter is identified as being composed of two Cantori located on two successive " most-noble " numbers values of the perturbed safety factor, and forming an internal transport barrier (ITB). Magnetic lines which succeed to escape across this barrier begin to wander in a wide chaotic sea extending up to a very robust barrier (as long as L 1) which is identified mathematically as a robust KAM surface at the plasma edge. In this case the motion is shown to be intermittent, with long stages of pseudo-trapping in the chaotic shell, or of sticking around island remnants, as expected for a continuous time random walk. For values of L 1, above the escape threshold, most magnetic lines succeed to escape out of the external barrier which has become a permeable Cantorus. Statistical analysis of a large number of trajectories, representing the evolution of a bunch of magnetic lines, indicate that the flux variable ψ asymptotically grows in a diffusive * 1 manner as (L 2 t) with a L 2 scaling as expected, but that the average radial position rm(t) asymptotically grows as (L 2 t) 1/4 while the mean square displacement around this average radius asymptotically grows in a subdiffusive manner as (L 2 t) 1/2. This result shows …
منابع مشابه
UW-CPTC 04-3 (Revised3) Paleoclassical transport in low collisionality toroidal plasmas
Radial electron heat transport in a low collisionality, current-carrying resistive plasma confined in an axisymmetric toroidal magnetic field is hypothesized to be caused by the paleoclassical collisional processes of parallel electron heat conduction and radial magnetic field diffusion. The electron distribution is Maxwellianized and the electron temperature equilibrated over a long length L (...
متن کاملPaleoclassical transport in low-collisionality toroidal plasmas
Radial electron heat transport in a low-collisionality, current-carrying resistive plasma confined in an axisymmetric toroidal magnetic field is hypothesized to be caused by the paleoclassical collisional processes of parallel electron heat conduction and radial magnetic-field diffusion. The electron distribution is Maxwellianized and the electron temperature equilibrated over a long length L t...
متن کاملPaleoclassical electron heat transport
It has been hypothesized that radial electron heat transport in low collisionality, current-carrying magnetically-confined toroidal plasmas results from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron ...
متن کاملar X iv : p hy si cs / 0 50 51 01 v 1 1 4 M ay 2 00 5 Two - fluid tokamak equilibria with reversed magnetic shear and sheared flow 1
The aim of the present work is to investigate tokamak equilibria with reversed magnetic shear and sheared flow, which may play a role in the formation of internal transport barriers (ITBs), within the framework of two-fluid model. The study is based on exact self-consistent solutions in cylindrical geometry by means of which the impact of the magnetic shear, s, and the “toroidal” (axial) and “p...
متن کاملMost electron heat transport is not anomalous; it is a paleoclassical process in toroidal plasmas.
It is hypothesized that radial electron heat transport in magnetically confined toroidal plasmas results from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature is equilibrated along magnetic field lines a long length L (>> poloidal periodicity length piR0q), which is the minimum of the electron c...
متن کامل